
SQL Rules of Thumb

• Table of Contents
• Native Coding
• Performance
• General
• Style
• COBOL Coding
• Miscellaneous Definitions

Native Coding

The following are some design tips for coding SQL statements. The following example
will be used to illustrate some of the following points:

Table1 C1, C2, Gender,BeginDate, EndDate (C1 is the primary key)
Table2 C1, C2, FKC1 (C1 is the primary key, FKC1 is a foreign key to Table1)

Performance

1. When joining tables, always specify the join condition first using only SQL
variables. This helps ensure that the tables will be accessed properly.

Correct:
SELECT A.C1
 , B.C2
 FROM Table1 A
 , Table2 B
WHERE A.C1 = B.FKC1
 AND A.C1 = :DG998-C1

Incorrect:
SELECT A.C1
 , B.C2
 FROM Table1 A
 , Table2 B
WHERE A.C1 = :DG998-C1 (No join conditions -
only host variables)
 AND B.FKC1 = :DG999-C1

To ensure the developer does not forget to add adequate join conditions, it would
be preferable to use the new join syntax available in DB2 V4.1 or later:
*
Correct:

SELECT A.C1
 , B.C2
 FROM Table1 A INNER JOIN Table2 B

 ON A.C1 = B.FKC1
WHERE A.C1 = :DG998-C1

• If you have additional host variables which may be specified on primary
key columns, they should be specified next.

• Next, you should specify predicates in most discriminating order.
This simply means that you should specify selection criteria which will
return the least amount of rows next. If you were to code two additional
predicates, say, Gender, and Birthday, you would specify Birthdate first,
and then Gender. There are only two possible values for Gender
(presumably) - Male and Female. There are many possible values for
Birthdate (out of the many people you know - who has the same
birthdate?).

2. Only select what you need; you do not need to SELECT columns just because
they are in your WHERE clause (but they are required if you are specifying the
column in the ORDER BY clause).

The idea here, is that you are consuming excess system resources. The more you
return to your program, the more that has to cross system address spaces. This
translates into increased memory usage and CPU consumption.

o This is especially true when using intersection entities (also known as an
associative entity type). In #1, notice that B.FKC1 wasn’t selected. Since,
by definition of the equality on the join condition, both A.C1 and B.FKC1
will contain the same value. Likewise, there is no need to return A.C1
since it’s value must be equal to host variable DG999-C1.

o If you can limit the selected columns to those columns that are contained
within one or more indices, DB2 will avoid retrieving the data pages
altogether which results in significant I/O savings.

3. Always use the correct host variable type to hold a given SQL variable! If you are
not sure what its type should be, then check an existing DCLGEN.

Due to the underlying storage of certain variable types, the use of a "less optimal"
data type could result in extremely long execution times. Any time that DB2 must
convert data in a host variable, that variable becomes ineligible for index
processing. I have seen cases where program execution time has gone from one
hour to five minutes simply by correcting a host variable definition.

4. If you are checking for an inclusive range BETWEEN is more efficient than >=
and <=. Note: This is for an inclusive range!

Correct:
 SELECT A.C1
 FROM Table1 A
 WHERE CURRENT DATE BETWEEN BeginDate
and EndDate

Incorrect:

 SELECT A.C1
 FROM Table1 A
 WHERE CURRENT DATE >= EndDate
 AND CURRENT DATE <= BeginDate

The BETWEEN clause also aids in statement readability.

5. The IN clause is more efficient than OR clauses for checking a list of values; this
also aids in statement readability.

Correct:
 SELECT A.C1
 FROM Table1 A
 WHERE A.C1 IN (1, 2, 3, 4)

Incorrect:
 SELECT A.C1
 FROM Table1 A
 WHERE A.C1 = 1
 OR A.C1 = 2
 OR A.C1 = 3
 OR A.C1 = 4

6. Do not use the ORDER BY clause unless it is actually needed. If order is
important, then you should specify it; otherwise the order will not be guaranteed
(e.g. do not depend on a clustering index to guarantee order, because the access
path or the attributes of the index may change.).

Unless you are strictly selecting indexed columns, DB2 will have to perform a
sort which is an expensive operation. Take a moment to consider your application
- if you are writing a file which will later be sorted, don’t use the ORDER BY
clause. Again, there are situations where its use is justified. An ORDER BY is
one of the most "expensive" operations you can perform in a SQL statement.

7. If possible, ORDER BY statements should only contain columns from the same
table.

If the ORDER BY clause contains columns from more than one table, DB2 will
always perform a sort.

Correct:
 SELECT B.FKC1
 , B.C2
 FROM Table1 A
 , Table2 B
 WHERE A.C1 = B.FKC1
 AND A.C1 = :DG998-C1
 ORDER BY B.FKC1, B.C2

Incorrect:
 SELECT A.C1 (redundant column being selected)
 , B.C2
 FROM Table1 A
 , Table2 B
 WHERE A.C1 = B.FKC1
 AND A.C1 = :DG998-C1
 ORDER BY A.C1, B.C2 (ordering by columns of two
different tables)

8. If you can, convert negative statements to positive statements (e.g. use IN as
opposed to NOT IN). A NOT will convert a Stage 1 predicate to a Stage 2
predicate resulting in degraded performance (If you really want to know what a
Stage 1 or Stage 2 predicate is, see your DBA and they will be happy to explain it
to you, but bring a pillow). NOT logic is typically more difficult to read.

9. DB2 joins are significantly more efficient than an application join!
You should assume that DB2 can perform the join more efficiently unless you
can disprove it. Coding SQL joins maintains the additional benefits of
simplifying application code and having the opportunity to take advantage of
future SQL enhancements in DB2.

10. Add COMMIT processing and restartability to your application to minimize the
time required to restart the application in the event it abnormally terminates due to
programming or external processing errors. An application should typically
COMMIT every 30 seconds.
If an application abnormally terminates all work will be rolled back to the last
commit point. If the application is not restartable, processor resources will be
wasted (due to the duplicate amount of work which must be performed).
COMMITs also free locks held on DB2 resources allowing greater concurrency.
COMMITs should typically be issed at 30 second intervals (again, to free

resources and allow greater concurrency); DB2 will wait up to 60 seconds for a
resource to be freed before issuing a deadlock and terminating the application
thread.

11. If you will be processing across multiple units of work, you should declare all
cursors with the WITH HOLD option.
If you are issuing COMMITs in your application without declaring cursors with
the WITH HOLD clause (and there is the pontential that the restart package may
issue COMMITs on your behalf), all cursors will be automatically closed by DB2.
This would require the application to perform "re-positioning" logic. The WITH
HOLD clause prevents the cursors from being closed at commit time.

12. Avoid the use of arithmetic within SQL statements.*
Arithmetic in a SQL statement will cause DB2 to avoid the use of an index. The
cost of the additional I/O operations required to complete the same query far
outweighs simplicity of coding. The arithmetic should be moved to the
application code (e.g. COBOL COMPUTE instruction) where it may be
performed more efficiently.

13. Use DISTINCT only when necessary.
The use of DISTINCT will always cause DB2 to perform a sort – even if it is
impossible to for the result set to contain duplicates.

General

1. The DB2 optimizer is fairly sophisticated, but you should provide as much
information as you can give it; this can be translated as "provide as much
selection criteria on your WHERE clause as is known to your program at the time
the SQL call is invoked". You should also attempt to use SQL variables to reduce
the amount of rows returned to your application program.
This gives DB2 more information to use to determine the optimal data path. DB2
can eliminate rows more efficiently than your application can, so you should use
this feature to your advantage.

Style

The following are suggestions only, but you should strive to provide adequate indentation
and whitespace to make your SQL statement as readable as possible. If you use a
consistent style, it will also aid other developers reading your code. Look at the various
examples above and you will notice the following:

1. SELECT, FROM, WHERE or other reserved words should be right-aligned
against the SELECT statement.

2. Operators are aligned with ample white space between their variables. This allows
developers to scan down the line for specific conditions.

3. Tables are listed one per line.
4. Tables are qualified with a correlation variable (e.g. A and B in most of the above

examples). These should be short and should help identify the original table. This
isn’t always required, but you should use them if you are joining several tables.

5. Commas (to continue a clause) are at the beginning of the next line.
6. Although I don’t show it in the examples above, always add a comment

containing one English grammatically correct sentence (and only one sentence)
to describe the SQL statement. This will aid developers who must maintain the
code and will immediately give them an idea of the nuances of the code (e.g.
some aspects of a SQL statement are implied rather than directly observable). An
example may be "This cursor will retrieve all ORGs that don’t have any cases
associated with them".

7. You should always provide a comment when special "tricks" are used to influence
the optimizer. This is critical because these are typically DB2 version-specific
predicates and often may confuse other developers maintaining the code. The
comment should include what statement was added for performance optimization,
and the intended effect of the statement.

COBOL Coding

The DB2 Application Programming and SQL Guide contains information related to
language-specific implementations of DB2 Embedded SQL.

1. Never code "SELECT *" in an embedded SQL statement.
When a "SELECT *" is embedded in an application program and the program is
compiled, the DB2-precompiler establishes a fixed set of working storage
variables (memory) to contain the results of the SQL statement. If the table is
altered to add new columns, any subsequent execution of the embedded SQL
statement will include the additional column; this implies that the program did not
previously acquire enough memory to hold the data returned by DB2 (which
would lead to a Operation Exception abend, or corruption of program working
storage).

2. Always code a column list on an INSERT statement.
The idea behind this is similar to the "SELECT *" rule. When an INSERT
statement is coded wihtout a column list, DB2 assumes that a host variable is
present for every column in the table. If an additional column is added to the
table, the program will have to be changed to include a new host variable. If the
column list is present, DB2 assumes that any columns that are absent from the list
are either NULL, or NOT NULL WITH DEFAULT, so the program does not
have to be changed to populate the new column.

3. Always provide a null indicator for nullable columns, and check its value prior to
using its equivalent host variable value; this is also true of functions applied to
non-nullable columns, but which may still return a NULL value. If you do not
wish to add additional logic required to deal with NULL values, you should apply
the COASLESCE or VALUE functions to the nullable column.

4. Nullable columns have the option of containing "nothing". DB2 does not initialize
these fields and may contain invalid data (e.g. alphabetic data in numeric fields).
To aid in source code readability, COBOL 88-levels (or equivalents for other
languages) should be defined in the null-DCLGEN.

Miscellaneous Definitions
Stage 1 Predicate A Stage 1 predicate is
evaluated at the lowest address space within
DB2. It is preferable that a predicate is a
Stage 1 predicate because it means that rows
are eliminated as soon as possible and are
eliminated from subsequent processing such
as sorting as required to satisfy an ORDER
BY clause.

Stage 2 Predicate A Stage 2 predicate is
applied to remaining rows after all Stage 1
predicates have been satisfied (and rows not
meeting this criteria are eliminated).

*This is DB2 version-specific item and is subject to change in subsequent DB2 releases.

